VPDES PERMIT FACT SHEET

This document gives pertinent information concerning the reissuance of the VPDES permit listed below. This permit is being processed as a Minor, Industrial permit. The effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260-00 et seq. The discharge results from poultry processing (slaughter, cut-up, and packaging), poultry processing for pet food, and plant cleanup. This permit action consists of reissuance and establishment of all applicable effluent limitations and monitoring requirements.

cleanu	p. This permit action consists of one and monitoring requirements	reissuance and es		
1.	Facility Name and Address:			SIC Code: 2015
	Tyson Foods, Inc. 13264 Mountain Roa Glen Allen, Virginia 2			
	Location: 13264 Mo	ountain Road, Har	over County	
2.	Permit No. VA0004031	Existing Per	mit Expiration Da	te: December 2, 2004
3.	Owner Contact: Name: M Telephone No: (804) 798-8357,	r. Steve Dugent ext. 305	Title: Complex	Environmental Manager
4.	Application Complete Date: Nov Permit Drafted By: Clinton T. Sh Piedmont Re Reviewed By: Curtis Linderman Public Comment Period Dates:	<u>ettle</u> Date egional Office Date: <u>July</u>		<u>.</u>
5.	Receiving Stream Name: River Mile: Basin: Subbasin: Section: Class: Special Standards: 7-Day, 10-Year Low Flow: 1-Day, 10-Year Low Flow: 30-Day, 5-Year Low Flow: Harmonic Mean Flow: Tidal? On 303(d) list? Attachment A – Flow Frequence	Chickahominy Ri 2-XDD001.49 James River (Lov N/A 4 III m 0 MGD 0 MGD 0 MGD 0 MGD NO YES by Determination		
6.	Operator License Requirements	: Class II		
7 .	Reliability Class: N/A			
8.	Permit Characterization: (X) Private () Federa	al ()S	tate	() POTW
	() Possible Interstate Effect () Interim Limits in	Other Document	

The State Water Control Board's Water Quality Standards includes an antidegradation policy (9 VAC 25-260-30). All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters. The limitations in this permit were developed in accordance with § 303(d)(4) of the Clean Water Act. Therefore, antidegradation restrictions do not apply.

The antidegradation review begins with a Tier determination. The UT Chickahominy River is determined to be a Tier 1 waterbody because it is listed as impaired on the Virginia's Section 303(d) Total Maximum Daily Load Priority List and Report due to violations of the General Standards (Benthics) (VADEQ 1998 and 2002).

15. Site Inspection:

Date <u>January 4, 2004</u> Performed by <u>Clinton T. Shettle</u>

16. Effluent Screening & Limitation Development:

Basis for Effluent Limitations - Outfall 001

PARAMETER	BASIS
pH	State Water Quality Standards
BOD5	Chickahominy Water Standards
Total Suspended Solids (TSS)	Chickahominy Water Standards
TRC	Water Quality Based Effluent Limitations (WQBEL)
Fecal Coliform (CFU/100 ml)	ELG - BPT
DO	State Water Quality Standards
Total P	Chickahominy Water Standards
Total N	Best Available Technology economically achievable (BAT) effluent limitations from EPA's 40 CFR Part 432.113, final rule. The facility's max. 30-day ave. product production level is 18.5 million lbs./month (over the ELG threshold of 100 million lbs./year).
Ammonia-N	Chickahominy Water Standards and 40 CFR Part 432.112 (Subpart K)
E. coli (CFU/100 ml)	State Water Quality Standards
TKN	Guidance Memo. 05-2009, VPDES Nutrient Limitations for Significant Dischargers to the Chesapeake Bay (GM 05-2009)
Zinc	State Water Quality Standards
Settleable Solids	Chickahominy Water Standards
Oil & Grease (as n-hexane extractable material, HEM)	Best Practicable Control Technology currently available (BPT) from 40 CFR Part 432.112, final rule and 40 CFR Part 136.3
Total Phosphorus-Monthly	GM 05-2009
Total Phosphorus-year-to-date	GM 05-2009
Total Phosphorus-calendar year	TMDL (VA SWCB approved 3/15/05)
Orthophosphate	GM 05-2009

Permit No.: VA0004031 Fact Sheet Page 5 of 10

D.4. Nutrient Enriched Waters/Chesapeake Bay Nutrients Reopener

Rationale: Rationale: Policy for Nutrient Enriched Waters, 9 VAC 25-40-10 allows reopening of permits for discharges into waters designated as nutrient enriched if total phosphorus and total nitrogen in a discharge potentially exceed specified concentrations. The policy anticipates that future total phosphorus and total nitrogen limits may be needed.

D.5. Water Quality Criteria Reopener

Rationale: VPDES Permit Regulation, 9VAC 25-31-220 D requires effluent limitations to be established which will contribute to the attainment or maintenance of water quality criteria.

D.6. Notification Levels

Rationale: Required by VPDES Permit Regulation, 9 VAC 25-31-200 A for all manufacturing, commercial, mining, and silvicultural dischargers.

D.7. Compliance Reporting Under Part I A

Rationale: Authorized by VPDES Permit Regulation, 9 VAC 25-31-190 J 4 and 220 I. This condition is necessary when pollutants are monitored by the permittee and a maximum level of quantification and/or a specific analytical method is required in order to assess compliance with a permit limit or to compare effluent quality with a numeric criterion. The condition also establishes protocols for calculation of reported values.

D.8. Groundwater Monitoring

Rationale: State Water Control Law § 62.1-44.21 authorizes the Board to request information needed to determine the discharge's impact on State waters. Ground water monitoring for parameters of concern will indicate whether possible lagoon seepage is resulting in violations to the State Water Control Board's Ground Water Standards. (see **Attachment H**)

D.9. Total Maximum Daily Load (TMDL) Reopener

Rationale: Section 303(d) of the Clean Water Act requires that Total Maximum Daily Loads (TMDLs) be developed for streams listed as impaired. This special condition is to allow the permit to be reopened if necessary to bring it into compliance with any applicable TMDL approved for the receiving stream. The re-opener recognizes that, according to Section 402(o)(1) of the Clean Water Act, limits and/or conditions may be either more or less stringent than those contained in this permit. Specifically, they can be relaxed it they are the result of a TMDL, basin plan, or other wasteload allocation prepared under section 303 of the Act.

D.10. General Permit Clause

Rationale: The Virginia General Assembly, in their 2005 session, enacted a new Article 4.02 (Chesapeake Bay Watershed Nutrient Credit Exchange Program) to the Code of Virginia to address nutrient loads to the Bay. Section 62.1-44.19:14 of the law requires the development of a watershed general permit that authorizes point source discharges of total nitrogen and total phosphorus and provides for the control of those nutrients in lieu of the individual VPDES permits, unless the individual permits contain more restrictive limits that are necessary to protect local water quality. That section of the law also sets forth various items to be contained within the general permit. Section 62.1-44.19:15 sets forth the requirements for new and expanded dischargers which are captured by the requirements of law.

Permit No.: VA0004031 Fact Sheet Page 7 of 10

21. Changes to Permit:

		CHANG	ES TO O	UTFALL	001, PART I.A	
Parameter	Effluent L	imits	Monitor Require	•	Reason	Date
	From	То	From	То		
001 Flow (MGD)	-	-	Cont. Rec'd 1/We.	TIRE Contin -uous	Clarification. The facility's flow measuring equipment is the "TIRE" type.	
006 F.Col. (CFU/100 ml.)	-	NL Ave. 400Max	-	-	ELG-40 CFR Part 432.112	1/05
013 TN (mg/l)	-	103 Ave 147Max	-	-	ELG-40 CFR Part 432	9/04
013 TN (kg/d)	-	487 Ave 695Max	-	-	ELG - 40 CFR Part 432	9/04
006 F.Col. (CFU/100 ml.) 120 <u>E.coli</u> (#/100ml.)	200 Geo. mean Fecal coliform	126 Geo. mean <u>E. coli</u>	-	-	Reflects changes in bacterial monitoring from Fecal Coliform to E. coli. (GM03-2007).	3/03
039 Ammonia (as N) (mg/l)	-	8.0 Max.	-	-	40 CFR 432.112 (Subpart K) Daily Max. requirement combined with Chickahominy Standards Mo.Ave. requirement.	1/05
068 TKN	-	NL Mo.Ave	-	2/Mo.	Guidance Memo. 05-2009	5/05
196 Zinc (ug/l) Tot. recov.	-	190 Ave & Max		-	WQS, 9VAC25-260, see attached MSTRANTI and STATS analyses.	2/04
389 Nitrate + Nitrite (as N)	-	NL Ave	-	2/Mo.	Guidance Memo. 05-2009	5/05
500 O&G (mg/l)	10 Ave. 15 Max.	-	1/We.	-	Replaced by O&G (as HEM) monitoring as per 40 CFR Part 432.112 and Part 136.3	1/05
791 TN kg/Mo.	-	NL Max	-	1/Mo.	Guidance Memo. 05-2009	5/05

Permit No.: VA0004031 Fact Sheet

Fact Sheet Page 9 of 10

	D.9	Total Maximum Daily Load (TMDL) Reopener - Section 303(d) of the Clean Water Act requires that Total Maximum Daily Loads (TMDLs) be developed for streams listed as impaired. UT Chickahominy is impaired. The TMDL was adopted by the State Water Control Board 3/15/05.
	D.10- D.13	Added to reflect GM05-2009: VPDES Nutrient Limitations for Significant Discharges to the Chesapeake Bay Watershed.
		Schedules of Compliance for E.coli, Zinc, and TMDL Limits
С		WET – reflects new guidance for Whole Effluent Toxicity testing (GM00-2012)

- 22. Variances/Alternate Limits or Conditions: None
- 23. Public Notice Information required by 9 VAC 25-31-280 B:
 All pertinent information is on file and may be inspected or copied by contacting Clinton T. Shettle at:

Piedmont Regional Office 4949-A Cox Rd Glen Allen, VA 23060 (804) 527-5032 ctshettle@deq.virginia.gov

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address, and telephone number of the writer, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing if public response is significant. Requests for public hearings shall state the reason why a hearing is requested, the nature of the issues proposed to be raised in the public hearing and a brief explanation of how the requester's interests would be directly and adversely affected by the proposed permit action. Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given.

24. Additional Comments:

Staff Comments:

- a. Reduced monitoring was not evaluated for this facility due to Warning Letters issued: February 4, 2004 (WL #W2004-01-P-1008), November 19, 2003 (WL #W2003-10-P-1009), and June 18, 2002 (WL #W2002-05-P-1011).
- b. The Lagoon Closure Plan contained in the current permit (Part I.D.7 and reissued through Part I.D.1) is continued in this reissuance and enclosed. (see **Attachment I**) The lagoons on site are intact, contain water, solids and are being considered for future enhancement of nutrient removal.
- c. The Groundwater Remediation Plan contained in the current permit is continued in this reissuance. Groundwater well monitoring results were analyzed for significant differences from the upgradient well using T-tests and non-parametric tests (see **Attachment H**)

Permit No.: VA0004031 Fact Sheet Attachments

ATTACHMENT A

- Flow Frequency Determination
- Flow Frequency Determination request

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, G	Glen Allen, VA 23060-6	296			804/527-502
SUBJECT:	Flow Frequen	cy Analysis Re	quest		
TO:	Jennifer V. Pa	Imore			
FROM:	Clinton T. She	ettle			
DATE:	August 31, 200	04			
A copy	of the previous I	Flow Frequency	s listed below. I ha Determination (if a tion of each existin	applicable).	e following: new or proposed outfalls.
Facility Name:	Tyson Foods, Inc	c Glen Allen	Permit Number:	VA0004031	
Permit Type:	Major Minor	Industrial M		ual Stormwater all that apply)	r Other
Permit Action:	Issuance		Reissuance		Modification
Current Expirat	ion Date: <u>Decen</u>	nber 2, 2004			
Topo Map: Glo	en Allen (127 A)				
Outfall Descript	ion:				
a. <u>001</u>	37° 41' 57" N Latitude	77° 33' 03" W Longitude	<u>Unnamed Tribu</u> Re	utary (UT) Chic eceiving Strean	<u>skahominy River</u> n
b. <u>002</u> #	37° 41' 47" N Latitude	77° 33' 02" W Longitude	Unnamed Tribut Re	tary (UT) Chick eceiving Strear	
c#	Latitude	Longitude	Re	eceiving Strear	m
d#	Latitude	Longitude	Re	eceiving Strear	m
Comments:					
A TMDL is unde	er development fo	or this Unnamed	I Tributary (UT) of t	the Chickahom	niny River.

Tyson Foods, Inc. Glen Allen, VA Line Drawing

ATTACHMENT C

• Glen Allen topographical maps

0	0.07	0.14	0.21	0.28	0.35 km
Ó	0.04	0.08	0.12	0.16	0.2 mi

Map center is 37° 41′ 53″N, 77° 33′ 05″W (NAD27) **Glen Allen** quadrangle

Projection is UTM Zone 18 NAD83 Datum

Tyson Foods, Inc. Glen Allen Processing Plant

ATTACHMENT D

Facility pH Data

Permit No.: VA0004031 Fact Sheet Attachments

ATTACHMENT E

• MSTRANTI and STATS printouts

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Tyson Foods, Inc. - Glen Allen Facility Name:

Receiving Stream:

UT of Chickahominy River

Permit No.: VA0004.0:31

Version: OWP Guida

Stream Information																Version:	OWP Guir	dance Me	Version: OWP Guidance Memo 00-2011 (8/24/00)	11 (8/24/	ć	
Mean Hardness (as CaCO3) = 90% Temperature (Annual) =	aCO3) =		173.1 mg/L	1	Stres 1010	Stream Flows 1Q10 (Annual) =		0 MGD	1	Mixing	Mixing Information	ç				F # # 10 00 4 10 10 10 10 10 10 10 10 10 10 10 10 10						1
90% Temperature (Wet season) =	t season) =		28 deg C		7Q10	7Q10 (Annual) =		0 MGD		Annual	Annual - 1Q10 Mix =	ji	100	100 %	ı	Mean Har	Mean Hardness (2000)					
90% Maximum pH =			deg C 7.4 SU		30010	30Q10 (Annual) =		0 MGD		ot (- / Q10 Mix = - 30010 Mix =	ıı .!!	100	% 001		90% Temp	90% Temp (Annual) =	caco3) = =		173	173.1 mg/L	1
10% Maximum pH = Tier Designation (1 or 2) =	"(0.9 SU		30010	30Q10 (Wet season) =	on) = 30n)	0 MGD		Wet Sea	Wet Season - 1Q10 Mix =	Mix =	100 %	% %		90% Temp (Wet season) =	(Wet seas	= (uos			28 deg C	
Jublic Water Supply (PWS) Y/N? =	/ WS) Y/N? =		- c		30Q5 =	30Q5 = Harmonia M.		0 MGD			- 3001	- 30Q10 Mix =	100 %	%		90% Maximum pH = 10% Maximum pH =	= Hd wnt			7	7.4 SU	
rout Present Y/N? = :arly Life Stages Present Y/N? =	nt Y/N? =		c >		Annual	Annual Average =		0 MGD 0 MGD								Discharge Flow =	=low =			6. 2.	6.9 SU 1.25 MGD	
arameter			,																			
19/1 unless noted)	Background	\perp		Water Quality Criteria	rja	L	Wastelo	Wastelood Allegaria)	
cenapthene	Conc.	Acute	Chronic	HH (PWS)	(S)	Acute		Chronic Lill (Strict			Antidegradation Baseline	ion Baseline										
crolein	0 (!		па	2.7E+03	\vdash	7	HH (PWS		Acute	Chronic	HH (PWS)	Ŧ	Acuto	udegradatio	Antidegradation Allocations			Most Limiting Allocations	d Allocatio		Γ
2rylonitrile ^C	5 6	ı	1	na	7.8E+02	- 2		e c	2.7E+03	ı	1	,		- Louis	S	HH (PWS)	王	Acute	Chronic	HH (PWS)		$\overline{}$
drin ^C	,	1	1	na	6.6E+00	0		<u> </u>	7.85+02	1	ı	1	1		ı	ı	ī	ı	J	2		Т
nmonia-N (mg/l)	3	3.0E+00	-	na	1.4E-03	8		na	6.6E+00		1	,	1	ı	ı	ı	,	·	,	Ē ;	Z./E+03	
early)	0	2.30F+01	1 085.100				!	na	1.4E-03	ī	1	1		ı	ı	ī	1	1	:	B	7.8E+02	
gh Flow)	,)		na	1	2.3E+01	1 2.0E+00	па	1	d				i	ı	1	1	3.0E+00		na	6.6E+00	
thracene	5	2.30E+01	1 #VALUE!	na	,	2 35404				(ı	:	1	,	;				0	вu	1.4E-03	_
imony	0	ı	I,	na	1.1E+05		ŧ		1	Ē	1	ı	-			E	-	2.3E+01	2.0E+00	na	,	
, inc	0	ı	1	na	4 3E±02		ı	na	1.1E+05	1	,			ı	1	;	- 2	2.3F+01				
ر قال	0	3.4E+02	1.5E+02	6	2017			na	4.3E+03	1	ı	(1	ī	Ĺ	1	<u>'</u>		*vALUE!	na	ı	
C C C	0	1	1	e		3.45+02	1.5E+02	na	;	ı	ı		ı	ı	1	1	,	ì	:	na	1.1E+05	
elle i	0	ı	ı	2 6	: !	1	ī	na	ı	1		ı	1	ı	1	ī			,	na	4.3E+03	
Zidine	0			<u> </u>	7.1E+02	1	1	na	7.1E+02	1	ı	ı	1	ī	1	:	<i>à</i>	102	.5E+02	na	1	
zo (a) anthracene ^c	0		1	па	5.4E-03	ī	1	na	5 4F-03		ı	ī	1	1	ī		:	ı	:	na	;	
zo (b) fluoranthene c	0		ı	na	4.9E-01	,	;	ē	20 10 10	ı	1	r	1	1	,		ı		,	na	7 1E±02	
zo (k) fluoranthene ^c	· o	ı	ı	na	4.9E-01	,	,	! @	1.36-01	E	ı	1	,	3	,	:	,	,	,	na	5.45	
zo (a) pyrene ^c	0	1	ı	па	4.9E-01	1	ı	! e	10-10-1	ŀ	ı	1	1	ı	,	;	1	,	:	na	4 9	
-Chloroethyl Ether	· · O	1	ı	na	4.9E-01	1	ı		4 9E-01	ı	1		1	1	,					na	4.9F-04	
Chloroisopropyl Ether	C		ı	na	1.4E+01	1	,		20.17	1	,	1	1	;)	ı	,		1	na	2010	
loform ^C	· ·	ı	ī	na	1.7E+05		1		L0+11+1	ī	Ē	,			E .				:		10-10-1	
benzylphthalate)	E	1	na	3.6E+03	,			1.7E+05	ı	1	,				1	_	ı			4.9E-01	ALCO DO
Jum Jum	0	ı	,	na	5.2F+03	ĺ	ı	na	3.6E+03	1	,	,		ı	ı			;		na	1.4E+01	
n Totrochie J. C	0	7.3E+00	1.7E+00	na	3	1 1	ı	na 5	5.2E+03	ı	,		,	I		,			ı	na 1	1.7E+05	
an retrachlonde	0	ı	1	e e	446404	7.3E+00	1.7E+00	па	1	1	1	,		1	1	,				na 3	3.6E+03	
aue.	0	2.4E+00	4.3E-03		104114.7		ı	na 4	4.4E+01	ı		1		ı	,		7.3			na 5	5.2E+03	
de	0	8.6E+05	2.3E+05		_		4.3E-03	na 2	2.2E-02	,				1	,		_		1.7E+00 r	na	;	
	0	1.9E+01	1.1E+01	<u> </u>			2.3E+05	па	1					1	1		_			na 4.	4.4E+01	
penzene	0	ı			_	1.9E+01	1.1E+01	na	-			!		,	,					na 2.	2.2E-02	
				P	2.1E+04	:		na 2.	2.1E+04		1		_	,	,	•		+05 2.3E+05	+05 n	в	-	
													_			l	1.9E+01	·01 1.1E+01	+01 ni	æ		

- -2.1E+04

na na na

1.9E+01 1.1E+01

Column C	Parameter	Background	punc	Wal	Water Quality Criteria	Sriferia	-													Control of the last of the las		
1 1 1 1 1 1 1 1 1 1	(ug/i unless noted)	Conc			ronic HH	L	+	Г	teload Alloca	tions		Antidogra	dation Day									
1 1 1 1 1 1 1 1 1 1	Ethylbenzene	0				_1	+	\neg	onic HH (P.			1	HH /DIVIC			ntidegradatio	n Allocations		1			
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Fluoranthene	0					1 +04		- na		_	1	SWH) LL			Chronic	HH (PWS)	Ŧ		ost Limiting	Allocations	
1 1 1 1 1 1 1 1 1 1	Fluorene	0					/E+02						;	1	ī			1	\dashv	-	H (PWS)	Ŧ
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Foaming Agents	0					E+04			1.4E+0		:	ı	1	ı	1	1		ı	:		.9E+04
The continue of the continue o	Suthion	0					1					:	1	1	,	3		ı		:		.7E+02
The control of the co	leptachlor ^c	C						1.0E			I	ſ	r	1	ı		ı	ı	ı	·		4F±04
Attributionist of the control of the	eptachlor Epoxide ^c) (0.25							1 4	1	1	;	;	,	í	ı	1	1	:		10.11.
Substituting and the state of t	Hexachlorobenzene ^c	-	5.2E							2.1E-0;	ا س	1	E	1	;	ı	1	1		.0E-02	: 2	ı
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	exachlorobutadiene	> (-							1.1E-0;			1	,		:	ı	1		8E-03	B (:
000-000-000-000-000-000-000-000-000-00	xachlorocyclohexane	0	1						na	7.7E-03		1	,		ı	ı	1	1		8F-03	2 7	1E-03
10-57 Control 1989 188-10	ha-BHC ^c								na	5.0E+02		,	,		:	;	ı	,		2	na 1.	1E-03
Discreptions of a section of a	xachlorocyclohexane	5												,	ı	ı	Ĭ				na 7.	7E-03
1	a-BHC ^c	C							па	1.3E-01	ī	ı	!	-						1	na 5.0	E+02
1	achlorocyclohexane	· *	!	1	, j				į						1	1	1	,	,			
Trickled to the control of the contr	nma-BHC ^c (Lindane)	0	0 55						<u> </u>	4.6E-01	ı	:	,	,							na 1.3	E-01
The control of the co			9.5						Š	L					ı	ı	ı	-	:			
This state of the control of the con	aciliorocyclopentadiene	0		1	Č		-		<u> </u>	6.3E-01	1	1	1	,				-			la 4.6	E-01
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	achloroethane	0	1)	-			ı	па	1.7E+04					ı	1	1		E-01			
11.1.2.3.ci) pyrane 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ogen Sulfide	0							na	8 9F+01	'	ı	ı	,	;					-	6.31	Lista
1 1 1 1 1 1 1 1 1 1	no (1,2,3-cd) pyrene ^c	0		4.0E+		i		2.0E+0(ı	ı	1	1	1		ı	_	•		3 175	
1			ı	1	na	4.9E-(- 10	1		1 1	ı	1	1	ì	,	r.	,	-			1 6	
1. 1	orone	•	ı	1	na	1	1		<u> </u>	4.9E-01	1	1	,			1	,	_			2	-04
1		> (1	1	na	2.6E+(40		na	1	ı	1	Ī		ı		,					_
1,145-02 1,145-02 1,145-03		>	ı				_	! L		2.6E+04	,	ï	;		ľ	1	,			_	_	5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		0	2.4E+0;			1	2.45.40			ı	ı	1	1		ŀ							
1 1 1 1 1 1 1 1 1 1	936	0	!	1.0E-01		1				1	ı	1	,		ı		:	_		na na	2.6E+	90
From the political politic	D 000	0	1	ı	Πa		1	1.0E-01	па	ı	,	I		,				2.45.		.00 na	,	
SNI		0	1.4E+00			7 1			na	,	ī	,		ı	į	,	1			01 na	:	
Orderizative	oromide	0	1	1		40 F-0.			na	5.1E-02	,		:	1	1	1		!	1.0E-(o1 na	•	
Shipting and a series of the s	cnior	0	ı	3.0E-02		4.01		1	na	4.0E+03	1		ı	1	,	,		!		na	:	
SN)		0	ı	0.0F+00		1	1	3.0E-02	na	,		1	i			,	ı	1.4€+		na na	5.1E-0	-
ship 0 29E-to 2 3ZE+to1 118	lorobenzene	0	1			:		0.0E+00	па	,		ī.	E		,			-	:	na	4.0E+0	
\$1,0 0 1 466+03 22E+02 32E+03 1 466+03 <th< td=""><td></td><td>0</td><td>2.9E+02</td><td></td><td>œ ¦</td><td>2.1E+04</td><td></td><td>ı</td><td></td><td>2.1E+04</td><td>ı</td><td>ı</td><td>1</td><td>,</td><td>,</td><td></td><td>1</td><td>!</td><td>3.0E-0</td><td>2 na</td><td>'</td><td></td></th<>		0	2.9E+02		œ ¦	2.1E+04		ı		2.1E+04	ı	ı	1	,	,		1	!	3.0E-0	2 na	'	
Control Cont	(N SI	0	ı		<u>s</u>	4.6E+03	_			4.6F+03		ı			,		1	:	0.0E+0	o na	3	
dinelity/jamine ² 0	Zene Zene	0	1		na na	1		1		3	ı	ī	ī				1	'	ı	na	2.15+0	_
Signature O Signature O Signature O Signature O Signature O	dimethylamine	0	1		a	1.9E+03		I		1 95+03	ı	I	1			1	Ē	2.9E+0		na	1 1 1	
Instruction of the control o	diphenylamine ^c	0	ı	ı	В	8.1E+01		1		3 15+01	ı	1	,				1	;	1	na	4.0540.4	_
0 6.5E-02 1.3E-02 na 1.4E+01 na 1.4E+01 na 1.4E+02 na <th< td=""><td>di-n-propylamine^c</td><td>0</td><td></td><td>1</td><td>na</td><td>1.6E+02</td><td>1</td><td>ı</td><td></td><td></td><td>ı</td><td>1</td><td>i i</td><td></td><td></td><td>:</td><td>1</td><td>•</td><td>:</td><td></td><td>. (</td><td>reaction of</td></th<>	di-n-propylamine ^c	0		1	na	1.6E+02	1	ı			ı	1	i i			:	1	•	:		. (reaction of
0		C	1 14	ı	па	1.4E+01	,	,		oE+02	ĩ	ı	;		:	L	ı	,			46.1	2000
1.4E-02 na	Janes 4	, ,	0.05-02	1.3E-02	na	1	6.5E-02	1.3F-02		1.4E+01	ı	1	,	_	1	1	1	ı	1	•	8.1E	A
0 - 14E-02 na 0 - 14E-02 na - 14E-02 na - 14E-02 na - 14E-02 na 0 - 14E-02 na - 14E-02 na - 14E-02 na - 14E-02 na 0 - 14E-02 na - 14E-02 na - 14E-02 na - 14E-02 na 0 - 14E-02 na - 14E-02 na - 14E-02 na - 14E-02 na		- ·	ı	1.4E-02	na	ī	,	1 4 5 00	na	ſ	1	,		'	1	1	1	:		na	1.6E+02	
0 1.4E-02 na 1.4E-02 <th< td=""><td></td><td>5</td><td>ı</td><td>1.4E-02</td><td>na</td><td>1</td><td></td><td>1.45-02</td><td>na</td><td>1</td><td>1</td><td>,</td><td></td><td>!</td><td>1</td><td>ı</td><td>ï</td><td>6.5F-02</td><td>ı L</td><td>na</td><td>1.4E+01</td><td></td></th<>		5	ı	1.4E-02	na	1		1.45-02	na	1	1	,		!	1	ı	ï	6.5F-02	ı L	na	1.4E+01	
0 - 1.4E-02 na - 1		0	ı	1.4E-02	na	,	!	1.4E-02	na	,	,		ı		Ī	ī	ı	70.70	1.3E-02	na	ı	
1.4E-02 na 1.4E-02 na		0	1	1.4E-02	na		ı	1.4E-02	na		1			-	1	ı	1		1.4E-02	na	ı	
0 - 1.4E-02 na 1.		0	ı	1.4E-02	e		ı	1.4E-02	na	-	,			-	1	,		ı	1.4E-02	na	ı	
0 - 1.4E-02 na - 1		0	Ē	1.4E-02	2 6	,	ı	1.4E-02	na	- 1		1	ì	1	,	,	•	:	1.4E-02	na	,	
0 - 1.4E-02 na - 1.7E-03 - 1.7E-03		0	1	1.4E-02	<u> </u>	,	1	1.4E-02	na		•		;		1		:	,	1.4E-02	na	;	
na 1.7E-03 na 1.7E-03		0	ı		<u> </u>	1		1.4E-02	na	_			1	1	1		ı	ī	1.4E-02	na	1	
1.4E-02 na					na	1.7E-03	:	:	-			1	;	1	ı	ı	1	1	1.4E-02	na	1	
g (202	1		:	-	ł	:	1	;	1.4E-02	3 6	:	
																	1	1	ı	! {	ı	A Sol

3/31/2005 3:28:46 PM

Facility = Tyson Foods, Inc. - Glen Allen Chemical = Chloride
Chronic averaging period = 4
WLAa = 860000
WLAc = 230000
Q.L. = 1000
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 90000

Variance = 2916000

C.V. = 0.6

97th percentile daily values = 219007.

97th percentile 4 day average = 149741.

97th percentile 30 day average = 108544.

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

No Limit is required for this material

The data are:

90000 Just taken from Feb. 1, 1949 recissued Certificate of Analysis from Enviro Compliance Labs., Inc.

7/28/2005 5:41:53 PM

Facility = Tyson Foods, Inc. - Glen Allen Chemical = Zinc
Chronic averaging period = 4
WLAa = 190
WLAc = 190
WLAc = 190
Q.L. = 0.01
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1

Expected Value = 134

Variance = 6464.16

C.V. = 0.6

97th percentile daily values = 326.077

97th percentile 4 day average = 222.947

97th percentile 30 day average = 161.611

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Acute Toxicity Maximum Daily Limit = 190
Average Weekly limit = 190
Average Monthly Llmit = 190

The data are:

134 / Data taken from 5/24/04 Primary Laboratories, Inc.

Analytical Laboratory Report using samples taken 3/21/1.

```
Facility = Tyson Foods, Inc.-Glen Allen
Chemical = Nickel (w/ Clean Metals Sampling)
Chronic averaging period = 4
WLAa = 290
WLAc = 32
Q.L. = 1
# samples/mo. = 1
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 1

Expected Value = 2.5

Variance = 2.25

C.V. = 0.6

97th percentile daily values = 6.08354

97th percentile 4 day average = 4.15947

97th percentile 30 day average = 3.01513

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

No Limit is required for this material

The data are:

2.5 Just Laten from Albion Environmental, College Station TX.

Clean Metals Study wing samples taken 7/12 & 7/13/99.

ATTACHMENT F

Whole Effluent Toxicity (WET) Testing memorandum and information

Toxics Management Program and oxicity Test Data Review: Tyson Foods, Inc.-Glen Allen, VPDES Permit No. VA0004031 Page 2 of 3

DATA SUMMARY

Acute Toxicity Tests using Pimephales promelas

Outfall 001

TEST DATE	LC ₅₀	PERCENT SURVIVAL IN 100% EFFLUENT	LABORATORY
1 st Annual – May 2000	>100%	100%	Water Technologies and Controls, Inc
2 nd Annual – June 2001	>100%	100%	Meritech, Inc.
3 rd Annual – June 2002	>100%	100%	Meritech, Inc.
4 th Annual – June 2003	>100%	100%	Meritech, Inc.
5 th Annual – June 2004	>100%	100%	Meritech, Inc.

Chronic Toxicity Tests using Ceriodaphnia dubia, IWC 100%

Outfall 001

TEST DATE	Test Result NOEC SURV/REPRO	LABORATORY
1 st Annual – May 2000	100/100	Water Technologies and Controls, Inc
2 nd Annual – June 2001	100/100	Meritech, Inc.
3 rd Annual – June 2002	100/100	Meritech, Inc.
4 th Annual – June 2003	100/90	Meritech, Inc.
5 th Annual – May 2004	100/50	Meritech, Inc.
5 th Annual retest – June 2004	100/100	Meritech, Inc.

CONCLUSION AND RECOMMENDATION

Results of the acute whole effluent toxicity tests performed on samples since the permit reissuance in 1999 to 2004 indicate compliance with the TMP in the current permit. During this time period, all tests resulted in an $LC_{50}>100\%$. No further testing for acute toxicity will be required.

Chronic testing performed by the facility in 2003 and 2004 has indicated reproductive NOEC concentrations of 90% and 50%. The 2004 test resulting in 50% was retested with 100% survival and reproduction; however, the 2003 test of 90% was not retested, which would indicate noncompliance with the permit. Statistical evaluation of the data would indicate that a limit of an NOEC ≥ 69% (1.44 TUc) is needed. Five of six of the annual chronic tests meet the proposed limit, but given the sensitivity of the statistics when used on data where there is "0" flow in the receiving stream and less than 10 data points, it will not be included at this time. Instead, it is recommended that the current annual chronic test frequency be increased to quarterly throughout the life of the permit, alternating between the chronic 3-brood static renewal survival and reproduction test with *Ceriodaphnia dubia* and the 7-day survival and

DRAFT WHOLE EFFLUENT TOXICITY (WET) TESTING LANGUAGE FOR VPDES PERMIT NO. VA0004031

E. WHOLE EFFLUENT TOXICITY (WET) TESTING

Biological Monitoring

In accordance with the schedule outlined in Part I.E.2., the permittee shall conduct quarterly chronic toxicity tests for the duration of the permit. The permittee shall collect 24-hour flow-proportioned composite samples of final effluent from outfall 001.

a. The chronic tests to use are:

Chronic 3-Brood Static Renewal Survival and Reproduction Test using *Ceriodaphnia dubia* (for quarters in odd numbered years)

Chronic 7-Day Static Renewal Survival and Growth Test using *Pimephales promelas* (for quarters in even numbered years)

These chronic tests shall be conducted in such a manner and at sufficient dilutions (minimum of five dilutions, derived geometrically) to determine the "No Observed Effect Concentration" (NOEC) for survival and reproduction or growth. Results that cannot be determined (i.e., a "less than" NOEC value) are not acceptable, and a retest will have to be performed within the compliance period for which the test was performed. Report the LC_{50} at 48 hours and the IC_{25} with the NOEC's in the test report.

b. The test dilutions should be able to determine compliance with the following endpoint:

Chronic NOEC of 69% equivalent to a TU_c of 1.44

The permittee may provide additional samples to address data variability. These data shall be reported and may be included in the evaluation of effluent toxicity. Test procedures and reporting shall be in accordance with the WET testing methods cited in 40CFR 136.3.

c. The permit may be modified or revoked and reissued to include pollutant specific limits should it be demonstrated that toxicity is due to specific parameters. The pollutant specific limits must control the toxicity of the effluent.

6/13/2005 4:50:21 PM

```
Facility = Tyson Foods, Inc.-Glen Allen Chemical = Chronic WET with C. Dubia Chronic averaging period = 4 WLAa = 3 WLAc = 1 Q.L. = 1 # samples/mo. = 1 # samples/wk. = 1
```

Summary of Statistics:

```
# observations = 6
Expected Value = 1.185
Variance = .505521
C.V. = 0.6
97th percentile daily values = 2.88359
97th percentile 4 day average = 1.97159
97th percentile 30 day average = 1.42917
# < Q.L. = 0
Model used = BPJ Assumptions, type 2 data
```

A limit is needed based on Chronic Toxicity Maximum Daily Limit = 1.46257478405323 Average Weekly limit = 1.46257478405323 Average Monthly Llmit = 1.46257478405323

The data are:

NPDES PERMIT RATING FORK SHEET

NPDES NO. <u>VA0004031</u>

Regular Addition DiscretionaryAddition Score change, but no status change Deletion

Facility Name: Tyson Foods, Inc. Glen Allen

City: Glen Allen, (Hanover County)

Receiving Water: <u>UT Chickahominy River</u>

Reach Number:

Is this facility a steam electric power plant (SIC=4911) with one or more of the following characteristics?

1. Power output 500 MW or greater (not using a cooling pond/lake) 2. A nuclear power plant

3. Cooling water discharge greater than 25% of the receiving stream's

YES: score is 600 (stop here) NO (continue)

Is this permit for a municipal separate storm sewer serving a population

YES; score is 700 (stop here) NO (continue)

FACTOR 1: Toxic Pollutant Potential Other SIC Codes:

PCS SIC Code: Primary SIC Code: 2015 Industrial Subcategory Code: 4 (Code 000 if no subcategory)

Determine the Toxicity potential from Appendix A. Be sure to use the TOTAL toxicity potential column and check one)

Toxicity Group	Codo	Points	A. Be sure to use the TOTAL	toxicity po	otential column d	and check one)		
No process	Code	Points	Toxicity Group	Code	Points	Toxicity Group	Code	ъ.
waste streams	0	0	3.	3	1.5	у слоир	Code	Points
⊠ 1.	1	5	4.		15	7.	7	35
2.	2	10		4	20	8.	8	40
			a , 5 ,	5	25	9.	9	
			6.	6	30	10.		45
						10.	10	50
						C-1 M		

Code Number Checked: 1

Total Points Factor 1: 5

FACTOR 2: Flow/Stream Flow Volume (Complete either Section A or Section B; check only one)

Type I: Flow < 5 MGD Flow 5 to 10 MGD Flow > 10 to 50 MGD Flow > 50 MGD Flow > 14 30 Type II: Flow < 1 MGD Flow > 10 to 5 MGD Flow > 10 to 5 MGD Flow > 10 to 5 MGD Flow > 10 MGD Flow > 5 to 10 MGD Flow > 5 to 10 MGD Flow > 5 to 10 MGD Flow > 10 MG	Wastewater Type (See Instructions)	Code	Points	6	Section B Waste				
Flow > 50 MGD 14 30 Type II: Flow < 1 MGD Flow 1 to 5 MGD Flow > 50 10 MGD Flow > 10 MGD Flow > 10 MGD Flow 1 to 5 MGD Flow > 10 MGD Flow > 10 MGD Flow > 50 10 MGD Flow > 50 10 MGD Flow > 50 MGD Flow > 10 MGD Flow > 10 MGD Flow > 50 MGD F	Type I: Flow < 5 MGD Flow 5 to 10 MGD Flow > 10 to 50 MGD	12	10		Wastewater Type (See Instructions)	Percent of instreat at Receiving Stre	am Wastev eam Low	vater Conce Flow	entration
Type II: Flow < 1 MGD Flow 1 to 5 MGD Flow > 5 to 10 MGD Flow > 10 MGD Flow > 10 MGD Flow > 5 to 10 MGD Flow > 10 MGD	Flow > 50 MGD				_			Code	Points
Flow > 5 to 10 MGD	Type II: Flow < 1 MGD	 21			Type I/III:	< 10 %		41	0
Flow > 10 MGD 24 50 > 50 % 43 Type III: Flow < 1 MGD 31 0 Type III: < 10 % 51 0 Flow > 5 to 10 MGD 33 20 Flow > 10 MGD 34 30 10 % to < 50 % 52 20 > 50 % 52 20	Flow > 5 to 10 MGD		20			10 % to < 50 %		42	10
Flow 1 to 5 MGD 32 10 Type II: <10 % 51 (Compared to 10 MGD) 33 20 Flow > 10 MGD 34 30 10 % to <50 % 52 2						> 50 %		43	20
Flow > 10 MGD 34 30 10 % to <50 % 52 2	Flow 1 to 5 MGD Flow > 5 to 10 MGD	32	10		Type II:	< 10 %		51	0
> 50 %	Flow > 10 MGD					10 % to <50 %		52	20
35 3						> 50 %	\boxtimes	53	30

Code Checked from Section A or B: 53 Total Points Factor 2: 30

A. Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-based federal effluent guidelines, or technology-based state effluent guidelines), or has a wasteload allocation been assigned to the discharge:

\boxtimes	Yes	Code 1	Poin 10
	No	2	0

B. Is the receiving water in compliance with applicable water quality standards for pollutants that are water quality limited in the permit?

\boxtimes	Yes	Code 1		Points 0
	No		2	5

C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

Yes	Code 1	Points 10
No	2	0

Code Number Checked: A <u>1</u> B <u>1</u> C <u>1</u>

Points Factor 5: $A \underline{10} + B \underline{0} + C \underline{10} = \underline{20} \text{ TOTAL}$

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from Factor 2): 53

Enter the multiplication factor that corresponds to the flow code: $_$ 0.6

Check appropriate facility HPRI Code (from PCS):

	HPRI#	Code	HPRI Score	Flow Code	Multiplication Factor
⊠ HPR	1 2 3 4 5 5 1 code check	1 2 3 4 5	20 0 30 0 20	11, 31, or 41 12, 32, or 42 13, 33, or 43 14 or 34 21 or 51 22 or 52 23 or 53 24	0.00 0.05 0.10 0.15 0.10 0.30 0.60 1.00

Base Score: (HPRI Score) $\underline{0}$ X (Multiplication Factor) $\underline{0.6}$ = $\underline{0}$ (TOTAL POINTS)

B. Additional Points NEP Program
For a facility that has an HPRI code of 3, does
the facility discharge to one of the estuaries
enrolled in the National Estuary Protection
(NEP) program (see instructions) or the
Chesapeake Bay?

Yes 1 10 No 2 0 Additional Points Treat Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see Instructions)

 Code
 Points

 Yes
 1
 10

 ✓
 No
 2
 0

Code Number Checked: A 4 B C 2

Points Factor 6: A <u>0</u> + B _ + C <u>0</u> = <u>0</u> TOTAL

ATTACHMENT H

- Groundwater data evaluation
- Groundwater Remediation Plan (1/9/92 approval & 10/21/91 supplemental letter)
- 10/21/91 Groundwater contour map

Tyson Foods, Inc. - Glen Allen (VA0004031) GW data trend graphs (page 2 of 3)

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen Ammonia (Well 3)

17 17

		my data (II	m/ i	17	
	Background	d Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	3 0.1 4 0.1 5 0.05 6 0.18 0.6 0.5	79.3 56.4 72 81.2 82.8 5.17 59.6 62.9 92.7 76.7 74.9 73.6 8.67 74.6 141 61.8 62.3	0.002 0.002 0.002 0.002 0.001 0.001 0.203 0.123 0.010 0.008 0.010 0.005 0.002 0.002 0.008 0.010 0.005 0.000 0.000	115.196 148.037 11.785 159.591 202.577 4019.187 80.408 32.116 582.399 66.145 40.106 25.330 3587.658 36.396 5246.531 45.793 39.276 0.000 0.000	
$X_b(ave) = 0$.149	$X_{m}(ave) = 68.567$,	0.000	
$T_b = T_m =$	1.746 1.746	(from lookup table)			
$s_b^2 = s_{-2}^2 = s$	0.025	$= [(X_{b1}-X_b(ave))^2 + (X_{b2}-X_b(ave))^2 (X_{bn}-X_b(ave))^2 (X_$	$X_{b}(ave))^{2}]/(n_{b}-1)$		

$$\begin{split} X_b(ave) &= 0.149 & X_m(ave) = 68.567 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & \\ s_b^2 &= 0.025 & = [(X_{b1}\text{-}X_b(ave))^2 + (X_{b2}\text{-}X_b(ave))^2 ...(X_{bn}\text{-}X_b(ave))^2]/(n_b\text{-}1) \\ s_m^2 &= 902.408 & = [(X_{m1}\text{-}X_m(ave))^2 + (X_{m2}\text{-}X_m(ave))^2 ...(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1) \\ T_{\text{star}} &= 9.390 & = [X_m(ave)\text{-}X_b(ave)]/\text{sqrt}(s_m^2/n_m + s_b^2/n_b) \\ W_b &= 0.001 & = s_b^2/n_b \\ W_m &= 53.083 & = s_m^2/n_m \\ \end{split}$$

There is a significant increase in this parameter

Permit Number Facility Name Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Ammonia (Well 4)

17

	001 01 00361	valions in the set of monitoring data (n_m) ?		17
	Backgroun	d Monitored Site	$[X_b-X_b(ave)]^2$	CO. B. MORRISON, COM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.1 0.1 0.1 0.05 0.18 0.6 0.5 0.05 0.24 0.05 0.08 0.1 0.1 0.06 0.05	10.7 8.4 12.1 10.9 15.5 32.6 11.7 11.5 13.9 11.4 10.2 7.45 0.67 5.5 7.12 7.32 7.82	[X _b -X _b (ave)] ² 0.002 0.002 0.002 0.002 0.010 0.001 0.203 0.123 0.010 0.008 0.010 0.005 0.002 0.002 0.008 0.010 0.005 0.005 0.000	[X _m -X _m (ave)] ² 0.029 6.098 1.514 0.001 21.442 472.218 0.690 0.398 9.184 0.282 0.448 11.692 104.028 28.831 14.058 12.598 9.299
19 20			0.000 0.000	0.000 0.000 0.000
$X_b(ave) = 0.$	149	$X_{m}(ave) = 10.869$		0.000
$T_b = T_m =$	1.746 1.746	(from lookup table)		
$s_b^2 = s_m^2 =$	0.025 43.301	$= [(X_{b1}-X_b(ave))^2 + (X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2(X_{bn}-X_b(ave))^2 + (X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))$	/e)) ²]/(n _b -1) (ave)) ²]/(n _m -1)	
$T_{\text{star}} =$	6.715	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$		
$W_b =$	0.001	$= s_b^2/n_b$		

There is a significant increase in this parameter

 $= (\mathsf{W_b} {\star} \mathsf{T_b} + \mathsf{W_m} {\star} \mathsf{T_m})/(\mathsf{W_b} + \mathsf{W_m})$

 $= s_m^2/n_m$

2.547

1.746

 $T_{comp} =$

Permit Number Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen BOD (Well 3) 17

		realism the set of monitoring data (n	ı _m)?	16
	Backgrour	nd Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1 2 3 4 5	7 2 2 2	9 10 4 8 2	0.125 21.595 0.125 0.125 0.125	13.598 21.973 1.723 7.223
6 7 8 9 10 11 12 13 14 15 16 17 18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 11 6 2 2 2 5 4 3 3	0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.419 0.125 0.125 0.125 0.125	10.973 0.473 0.473 32.348 0.473 10.973 10.973 0.098 1.723 5.348 5.348 1.723 0.000 0.000
$X_{b}(ave) = 2.$	353	X _m (ave) = 5.313	0.000 0.000	0.000
$T_b = T_m =$	1.746 1.753	(from lookup table)		
$S_b^2 = S_m^2 =$	1.493 8.363	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn})^2$ = $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_m)^2$	$X_b(ave))^2]/(n_b-1)$ $_n-X_m(ave))^2]/(n_m-1)$	
T _{star} =	3.788	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_m^2)$	l _b)	
$W_b = W_m =$	0.088 0.523	$= s_b^2/n_b$ $= s_m^2/n_m$,
$T_{comp} = 1.7$	751993185	$= (W_b \! \star \! T_b + W_m \! \star \! T_m) / (W_b + W_m)$		

There is a significant increase in this parameter

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen Chloride (Well 2)

		or valions	in the set of monitoring data	a (n _m)?	17
	1 .	ground 4	Monitored Site	$[X_b-X_b(ave)]^2$	17 $[X_m-X_m(ave)]^2$
1 1: 1: 15 16 17 18 19	5 2 7 8 9 4 10 2 11 5 5 3 4 1 6 8 3 6		53 52 47 43 59.6 49.6 47 45 41 36 39 39 38 38 38 38	0.396 0.137 1.879 1.879 0.450 0.594 0.137 1.879 0.396 1.879 2.655 2.655 1.879 5.620 21.431 0.137 6.914 0.000 0.000	93.976 75.588 13.647 0.094 265.498 39.616 13.647 2.870 5.317 53.376 18.541 18.541 28.152 28.152 28.152 28.152 106.211 0.000 0.000
$X_b(ave) = 3$ $T_b = 3$ $T_m = 3$	1.746 1.746		= 43.306 kup table)		0.000
$s_b^2 = s_m^2 =$	3.182 51.221	= $[(X_{b1}-X_{b}(X_{b1}-X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1}-X_{b}(X_{b1$	$(ave)^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - (ave))^2 + (X_{m2} - X_m(ave))^2 (X_m)^2$	X _b (ave))²]/(n _b -1) n ⁻ X _m (ave))²]/(n _b -1)	
$T_{star} =$ $W_b =$ $W_m =$	0.187 3.013	$= [X_m(ave) \cdot s_b^2/n_b]$ $= s_m^2/n_m$	$-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_p)$	b)	

There is a significant increase in this parameter

 $= (\mathsf{W_b} {}^\star \mathsf{T_b} + \mathsf{W_m} {}^\star \mathsf{T_m})/(\mathsf{W_b} + \mathsf{W_m})$

1.746

Permit Number Facility Name Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen Chloride (Well 4)

17 17

		8		14
E	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2 2 2.7 2.6 3 2 4 2 5 5 2 1	15 9 10 9 23.4 17.4 17 22 21 123 26 20	[X _b -X _b (ave)] ² 0.396 0.137 1.879 1.879 0.450 0.594 0.137 1.879 0.396 1.879 2.655 2.655	[X _m -X _m (ave)] ² 95.120 248.155 217.649 248.155 1.830 54.066 60.108 7.579 14.085 9652.485 1.555 22.590 22.590
15 16 17 18 19 20	8 3 6	19 29 20 20	5.620 21.431 0.137 6.914 0.000 0.000	33.096 18.038 22.590 22.590 0.000 0.000

$$\begin{split} X_b(ave) &= 3.371 & X_m(ave) = 24.753 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & \\ s_b{}^2 &= 3.182 & = [(X_{b1}\text{-}X_b(ave))^2 + (X_{b2}\text{-}X_b(ave))^2 ...(X_{bn}\text{-}X_b(ave))^2]/(n_b\text{-}1) \\ s_m{}^2 &= 671.393 & = [(X_{m1}\text{-}X_m(ave))^2 + (X_{m2}\text{-}X_m(ave))^2 ...(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1) \\ T_{\text{star}} &= 3.394 & = [X_m(ave)\text{-}X_b(ave)]/\text{sqrt}(s_m{}^2/n_m + s_b{}^2/n_b) \\ W_b &= 0.187 & = s_b{}^2/n_b \\ W_m &= 39.494 & = s_m{}^2/n_m \\ \end{split}$$

There is a significant increase in this parameter

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance)

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen COD (Well 3)

17

		שומי (וות	n):	
	Backgrour	d Monitored Site		17
1 2	7 24	45	$[X_b - X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	24 31 19 30 30 15 15 15 15 19 21 15 15 15 15	45 72 60 119 70.7 85 37 58 68 58 64 92 58 51 58 67 57	151.145 22.145 137.028 0.087 114.616 114.616 18.439 18.439 18.439 0.087 2.910 18.439 18.439 18.439 18.439 18.439 18.439	435.336 37.642 34.395 2823.359 23.380 366.159 833.171 61.854 4.559 61.854 3.477 683.054 61.854 220.959 61.854
19 20 e) = 19.29	94	X _m (ave) = 65.865	0.000 0.000 0.000	78.583 0.000 0.000 0.000

$$X_{b}(ave) = 19.294 \qquad X_{m}(ave) = 65.865$$

$$T_{b} = 1.746 \qquad (from lookup table)$$

$$S_{b}^{2} = 46.846 \qquad = [(X_{b1}-X_{b}(ave))^{2}+(X_{b2}-X_{b}(ave))^{2}...(X_{bn}-X_{b}(ave))^{2}]/(n_{b}-1)$$

$$S_{m}^{2} = 362.049 \qquad = [(X_{m1}-X_{m}(ave))^{2}+(X_{m2}-X_{m}(ave))^{2}...(X_{mn}-X_{m}(ave))^{2}]/(n_{b}-1)$$

$$T_{star} = 9.496 \qquad = [X_{m}(ave)-X_{b}(ave)]/sqrt(S_{m}^{2}/n_{m} + S_{b}^{2}/n_{b})$$

$$W_{b} = 2.756 \qquad = S_{b}^{2}/n_{b}$$

$$W_{m} = 21.297 \qquad = S_{m}^{2}/n_{m}$$

$$T_{comp} = 1.746 \qquad = (W_{b}*T_{b} + W_{m}*T_{m})/(W_{b} + W_{m})$$

There is a significant increase in this parameter

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Nitrite (Well 2)

17

		3 44	ita (IIm)?	
	Backgrour	nd Monitored Site	[V V /2	17
1 2 3 4 5 6 7 8 9 10	0.01 0.01 0.01 0.05 0.01 0.11 0.02 0.07	Monitored Site 0.01 0.01 0.01 0.01 0.05 0.01 0.02 0.02 0.02 0.02	[X _b -X _b (ave)] ² 0.001 0.001 0.001 0.001 0.000 0.001 0.005 0.000 0.001	[X _m -X _m (ave)] ² 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000
12 13 14 15 16 17 18 19 20	0.05 0.14 0.02 0.02 0.02 0.02 0.02	0.34 0.03 0.02 0.02 0.02 0.02 0.02	0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.091 0.000 0.000 0.000 0.000 0.000 0.000
e) = 0.036	3	$X_{m}(ave) = 0.038$		0.000

$$X_{b}(ave) = 0.036 \qquad X_{m}(ave) = 0.038$$

$$T_{b} = 1.746 \qquad (from lookup table)$$

$$S_{b}^{2} = 0.001 \qquad = [(X_{b1}-X_{b}(ave))^{2}+(X_{b2}-X_{b}(ave))^{2}...(X_{bn}-X_{b}(ave))^{2}]/(n_{b}-1)$$

$$S_{m}^{2} = 0.006 \qquad = [(X_{m1}-X_{m}(ave))^{2}+(X_{m2}-X_{m}(ave))^{2}...(X_{mn}-X_{m}(ave))^{2}]/(n_{m}-1)$$

$$T_{star} = 0.111 \qquad = [X_{m}(ave)-X_{b}(ave)]/sqrt(S_{m}^{2}/n_{m} + S_{b}^{2}/n_{b})$$

$$W_{b} = 0.000 \qquad = S_{b}^{2}/n_{b}$$

$$W_{m} = 0.000 \qquad = S_{m}^{2}/n_{m}$$

$$T_{comp} = 1.746 \qquad = (W_{b}*T_{b} + W_{m}*T_{m})/(W_{b} + W_{m})$$

There is no significant difference between the monitoring data and the

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Nitrite (Well 4)

		of monitoring data (n	m)?	17
	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.01 0.01 0.01 0.01 0.05 0.01 0.11 0.02 0.07 0.02 0.05 0.14 0.02 0.02 0.02 0.02 0.02	0.01 0.03 0.01 0.05 0.01 0.05 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.001 0.001 0.001 0.001 0.000 0.001 0.005 0.000 0.001 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	[X _m -X _m (ave)] ² 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
e) = 0.03	36 V (a))			0.000

$$\begin{split} X_b(ave) &= 0.036 & X_m(ave) = 0.022 \\ T_b &= 1.746 & (from lookup table) \\ T_m &= 1.746 & = [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 ...(X_{bn} - X_b(ave))^2]/(n_b - 1) \\ s_m^2 &= 0.000 & = [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2 ...(X_{mn} - X_m(ave))^2]/(n_m - 1) \\ T_{star} &= -1.402 & = [X_m(ave) - X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b) \\ W_b &= 0.000 & = s_b^2/n_b \\ W_m &= 0.000 & = s_m^2/n_m \\ \end{split}$$

$$T_{comp} &= 1.746 & = (W_b * T_b + W_m * T_m)/(W_b + W_m) \end{split}$$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance)

Permit Number Facility Name Parameter What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Nitrate (Well 3) 17

		moning data (n _m)	?	
Back	kground	Monitored Site	DV 31	17
1			$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
2	0.4	0.5		: "" · 'm(\ave)]
3	0.6	0.3	0.046	0.125
	0.4	0.1	0.172	0.024
_	0.3	1	0.046	0.002
_	0.18	0.09	0.013	0.729
	0.1	0.03	0.000	0.003
	0.02	0.02	0.007	
12	.15	0.17	0.027	0.014
	.06	0.02	0.001	0.016
	.02	0.02	0.016	0.001
	02	0.02	0.027	0.016
	03	0.02	0.027	0.016
13 0.	16		0.024	0.016
14 0.1	15	0.02 0.08	0.001	0.016
15 0.1	16	0.02	0.001	0.016
16 0.1	1		0.001	0.004
17 0.2	9	0.04	0.006	0.016
18		0.04	0.011	0.011
19			0.000	0.011
20			0.000	0.000
			0.000	0.000
$X_b(ave) = 0.185$	$X_{m}(ave) = 0.146$	3		0.000
$T_b = 1.746$	(from lookup tab	1-2		
$T_m = 1.746$	(an lookup lab	e)		
$s_b^2 = 0.027$	- [/V V /			
$s_m^2 = 0.065$	$= [(X_{-1} - X_b(ave))^2 +$	$(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2$	/e)) ²]/(n _b -1)	
T .		$(X_{mn}-X_m(ave))^2.$	ave)) ²]/(n _m -1)	
$T_{\text{star}} = -0.529$	= [X _m (ave)-X _b (ave)]/sqrt($s_{m}^{2}/n_{m} + s_{b}^{2}/n_{b}$)		
$W_b = 0.002$	$= s_b^2/n_b$			
$W_m = 0.004$	$= s_m^2/n_m$			
T _{comp} = 1.746	$= (W_b * T_b + W_m * T_m)$	/(W _b + W _m)		

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number

Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031

Tyson Foods, Inc.-Glen Allen Sulfate (Well 2)

17

			an trie set of monitoring data	(n _m)?	17	
	Background				17	
		, sund	Monitored Site	$[X_b-X_b(ave)]^2$		
	1	5		[76-76(ave)]		$[X_m-X_m(ave)]^2$
		5	5	000 -		/1
		5	6	282.319		417.842
			6	282.319		377.959
		5	9	282.319		377.959
			14.5	282.319		270.312
			21.2	449.540		
	7 5		28	22860.728		119.709
	8 3		30	282.319		17.988
	9 5		34	353.528		6.548
	10 6		36	282.319		20.783
	1 3		36	249.714		73.253
	2 121		34	353.528		111.489
1:	1001 1 01			9840.173		111.489
14	4 5		34	316.924		73.253
15	5 18		34	282.319		73.253
16	3.7		34	14.458		73.253
17	3.34		41.1	327.695		73.253
18			29.7	340.858		45.199
19				0.000	1	8.138
20				0.000	(0.000
				0.000	(0.000
$X_b(ave) = 21.802$ X_m		Y (0)	2)	0.000	C	0.000
		n _m (avi	e) = 25.441			
$T_b =$	1.746					
$T_m =$		(from lo	okup table)			
· m —	1.746					
$S_b^2 =$	00.1-					
$S_m^2 =$	2317.711	$=[(X_{b1}-\lambda$	$(X_b(ave))^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - X_b(ave))^2 + (X_{bn} - X$			
5 _m =	153.855	$=[(X_{m_1}-)$	$(X_{m}(ave))^{2} + (X_{m2} - X_{m}(ave))^{2} (X_{mn} - X_{m}$	$(n_b-1)^2$		
-						
$T_{star} =$	0.302	$= [X_m(av)]$	e)- $X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$			
			$s_b = \frac{1}{100} \text{ square} \left(\frac{s_m}{m} + \frac{s_b}{n_b} \right)$)		
$W_b =$	136.336	$= s_b^2/n_b$				
$W_m =$	9.050	$= s_m^2/n_m$				
		-111 · · · · m				
T _{comp} =	4 74-					
comp —	1.746	$= (W_b * T_b -$	$+ W_m * T_m)/(W_b + W_m)$			
			(** w m)			

There is no significant difference between the monitoring data and the

Cochran's Approximation to the Behrens-Fisher Student's t-Test (at a 5% Level of Significance) To use this spreadsheet, please fill in only the shaded boxes.

Permit Number Facility Name

Parameter

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0004031 Tyson Foods, Inc.-Glen Allen Sulfate (Well 4)

17 17

		Janua (1	(m) ?	
	Background			17
	- Inground	Monitored Site	$[X_b-X_b(ave)]^2$	
1	5		[Ab-Ab(ave)]-	$[X_m-X_m(ave)]^2$
2	5	5	000 -	
. 3	5	5	282.319	13.215
4		5	282.319	13.215
	5	5	282.319	
5	0.6	9.7	282.319	13.215
6	173	9.7	449.540	13.215
7	5	5	22860.728	1.134
8	3		282.319	1.134
9	5	6	353.528	13.215
10	6	15	282.319	6.945
11	3	8	249.714	40.509
12	121	3	353.528	0.404
13	4	33	9840.173	31.757
14	5	8		593.639
15	18	21	316.924	0.404
16	3.7	3	282.319	152.886
17	3.34	4.4	14.458	31.757
18	3.34	1	327.695	17.938
19			340.858	58.298
			0.000	0.000
20			0.000	
			0.000	0.000
/e) = 21.8	02 X_(3Ve) - 8 cos		0.000

$$X_{b}(ave) = 21.802 \qquad X_{m}(ave) = 8.635$$

$$T_{b} = 1.746 \qquad (from lookup table)$$

$$S_{b}^{2} = 2317.711 \qquad = [(X_{b1}-X_{b}(ave))^{2}+(X_{b2}-X_{b}(ave))^{2}...(X_{bn}-X_{b}(ave))^{2}]/(n_{b}-1)$$

$$S_{m}^{2} = 62.680 \qquad = [(X_{m1}-X_{m}(ave))^{2}+(X_{m2}-X_{m}(ave))^{2}...(X_{mn}-X_{m}(ave))^{2}]/(n_{m}-1)$$

$$T_{star} = -1.113 \qquad = [X_{m}(ave)-X_{b}(ave)]/sqrt(S_{m}^{2}/n_{m} + S_{b}^{2}/n_{b})$$

$$W_{b} = 136.336 \qquad = S_{b}^{2}/n_{b}$$

$$W_{m} = 3.687 \qquad = S_{m}^{2}/n_{m}$$

$$T_{comp} = 1.746 \qquad = (W_{b}*T_{b} + W_{m}*T_{m})/(W_{b} + W_{m})$$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity